Interactions between oxidative stress and inflammation in salt-sensitive hypertension.
نویسندگان
چکیده
The goal of this study was to test the hypothesis that increases in oxidative stress in Dahl S rats on a high-salt diet help to stimulate renal nuclear factor-kappaB (NF-kappaB), renal proinflammatory cytokines, and chemokines, thus contributing to hypertension, renal damage, and dysfunction. We specifically studied whether antioxidant treatment of Dahl S rats on high Na intake would decrease renal inflammation and thus attenuate the hypertensive and adverse renal responses. Sixty-four 7- to 8-wk-old Dahl S or R/Rapp strain rats were maintained for 5 wk on high Na (8%) or high Na + vitamins C (1 g/l in drinking water) and E (5,000 IU/kg in food). Arterial and venous catheters were implanted at day 21. By day 35 in the high-Na S rats, antioxidant treatment significantly increased the renal reduced-to-oxidized glutathione ratio and decreased renal cortical H(2)O(2) and O(2)(*-) release and renal NF-kappaB. Antioxidant treatment with vitamins C and E in high-Na S rats also decreased renal monocytes/macrophages in the glomeruli, cortex, and medulla, decreased tumor necrosis factor-alpha by 39%, and decreased monocyte chemoattractant protein-1 by 38%. Vitamin-treated, high-Na S rats also experienced decreases in arterial pressure, urinary protein excretion, renal tubulointerstitial damage, and glomerular necrosis and increases in glomerular filtration rate and renal plasma flow. In conclusion, antioxidant treatment of high-Na Dahl S rats decreased renal inflammatory cytokines and chemokines, renal immune cells, NF-kappaB, and arterial pressure and improved renal function and damage.
منابع مشابه
Primed polymorphonuclear leukocytes, oxidative stress, and inflammation antecede hypertension in the Sabra rat.
Hypertension is accompanied by systemic oxidative stress, inflammation, and priming of peripheral polymorphonuclear leukocytes (PMNLs), yet the involvement of these factors in the pathophysiology of hypertension is incompletely understood. We investigated the relationship between oxidative stress, primed PMNLs, and inflammation and the development of hypertension in the Sabra rat model of salt-...
متن کاملInflammation, angiotensin II, and hypertension.
Inflammation, Angiotensin II, and Hypertension To the Editor: In a recent article, Liao et al1 used mice lacking the CC chemokine receptor 2 (CCR2) to test the hypothesis that CCR2 activation plays an important role in the renal damage induced by angiotensin infusions. In their elegant article, it was also shown that CCR2 / mice and CCR2 / mice developed similar elevations of blood pressure des...
متن کاملBlood pressure in a hypertensive mouse model of SLE is not salt-sensitive.
Systemic lupus erythematosus (SLE) is a risk factor for hypertension. Previously, we demonstrated that an established mouse model of SLE (female NZBWF1 mice) develops hypertension with renal inflammation and oxidative stress, both characteristics known as contributing mechanisms to the development of salt-sensitive hypertension. On the basis of this model, we hypothesized that blood pressure in...
متن کاملAssociation of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence.
Mitochondria are the major source of superoxide (O(2)(-)) in the aerobic organisms. O(2)(-) produced by the mitochondria is converted to hydrogen peroxide by mitochondrial superoxide dismutase (SOD2). Mice with complete SOD2 deficiency (SOD2(-/-)) exhibit dilated cardiomyopathy and fatty liver leading to neonatal mortality, whereas mice with partial SOD2 deficiency (SOD2(+/-)) show evidence of ...
متن کاملOxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all.
Recent evidence indicates that interstitial infiltration of T cells and macrophages plays a role in the pathogenesis of salt-sensitive hypertension. The present review examines this evidence and summarizes the investigations linking the renal accumulation of immune cells and oxidative stress in the development of hypertension. The mechanisms involved in the hypertensive effects of oxidant stres...
متن کاملOrally active epoxyeicosatrienoic acid analog attenuates kidney injury in hypertensive Dahl salt-sensitive rat.
Salt-sensitive hypertension leads to kidney injury. The Dahl salt-sensitive hypertensive rat (Dahl SS) is a model of salt-sensitive hypertension and progressive kidney injury. The current set of experimental studies evaluated the kidney protective potential of a novel epoxyeicosatrienoic acid analog (EET-B) in Dahl SS hypertension. Dahl SS rats receiving high-salt diet were treated with EET-B (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 293 6 شماره
صفحات -
تاریخ انتشار 2007